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Received 15 May 1991 

Abstract. Quantum two-dimensional Heisenberg ferromagnetic systems were studied using 
the Handscomb Monte Carlo approach. Temperatures ranged from 0.3 to 4.03. The large 
system sizes used made it possible to apply scaling methods and to calculate infinite system 
susceptibilityvdues for temperatures considerably lower than have been studied elsewhere. 
The internal energy was found to be essentially size-independent for all temperatures. 
Comparisonsweredrawn between the Godfrineralexperimental observationofthe quantum 
two-dimensional ferromagnetism in thin filmsof 'He and our results for temperature depen- 
dence of simulated susceptibilily. The existence of several essential similarities was verified: 
for example, the non-exponential low-temperature behaviour of ,yT. Our results for sus- 
ceptibility and energy were compared with other numerical simulations and various theor- 
etical predictions. The comparisons have enabled us to define temperature regions where 
high and low temperature approximations are valid. Monte Carlo results also fill the gap 
between the approximations. 

1. Introduction 

Quantum two-dimensional magnetic systems have been receivingconsiderable attention 
for some time now. The discovery of high-temperature superconductivity stimulated an 
interest in Heisenberg antiferromagnetism, since two-dimensional antiferromagnetic 
subsystems were found in La,CuO, [I, 21. The experimental observation of quantum 
ferromagnetism in thin films of 'He was reported recently by Godfrin et af [3]. 

In the present work we have applied the so-called Handscomb quantum Monte Carlo 
(MC) method [4] to study the two-dimensional quantum Heisenberg ferromagnetic 
model. The Handscomb method, as was first noticed by Lyklema [5 ] ,  runs into serious 
difficulties when applied to the antiferromagnetic case. Although it is the latter that is 
of special importance to superconductivity theory, it is possible that the functional forms 
of observables such as energy, susceptibility and correlation length are essentially the 
same for both types of magnetization. 

The existing theories of quantum Heisenberg magnetics [l, 2, 6-81 frequently dis- 
agree with each other; their regions of applicability are sometimes uncertain, and some 
of the theories substitute classical vectors for quantum spins. The numerical simulations 
made it  possible for us to clarify some of the problems mentioned. 
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We have used the Handscomb Monte Carlo approach to study the thermodynamical 
properties of the two-dimensional quantum Heisenberg ferromagnetic with the nearest- 
neighbour interaction. described by the Hamiltonian: 

H = -J Si’s, (1.1) 
(ti) 

with conventional notation. 
In section 2 we only outline the essential features of the Handscomb MC approach, 

while the practical implementation of the Monte Carlo method [4, 51 is described in 
detail in the Appendix. 

In sections 3.1.1 and 3.2 we discuss the resultsof numerical simulations. Comparisons 
are made with spin-wave theory predictions for susceptibility and energy behaviour [7, 
81, the high-temperature expansions [2, 61 and the results of works in which various 
Monte Carlo methods were used tostudy two-dimensional quantum Heisenberg systems 

In section 3.1.4 simulated susceptibility temperature dependence is discussed as 
providing insights into the experimentally observed two-dimensional quantum ferro- 
magnetic systems in 3He found in (31. 

[2.9,101. 

2. Handscomb Monte Carlo method 

When using the Handscomb MC method we perform a random walk over the space 
consisting of sequences C, of spin permutation operators Pi,. The relevant observables 
such as energy E ,  zero-field susceptibility xT,  specific heat C, and spin-correlation 
functions (Sisi) are calculated as MC averages of certain parameters either of the per- 
mutation operators sequence C, or the permutational cycles to which it can be reduced. 

For the internal energy the expression is: 

E = - ( r ) /p  + NI.  (2.1) 

Where ( ) is the expectation value calculated as a MC average, r is the sequence length, 
N is number of spins in the system. 

For the specific heat: 

C,,/k = (rZ) - (r)* - (r). (2.2) 

For the susceptibility: 

(2.3) 

where k(C,) is the number of cycles that make up the permutation induced by the 
sequence C,, and a, is the length of the jth cycle. 

The contribution of current permutation to the spin correlation function (Sisi) is 
equal to 3/4 if the spinssituated in theith andjth sites belongto the same permutational 
cycle, and is equal to zero if not. 

The statistical errors of the numerical simulation were estimated in the conventional 
way: we havedivided the whole ~ c r u n i n t o  tenorso blocksandmonitoredthedifference 
between the overall average and the block ones. 
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T N  ll-,l 

F i w  1. High-temperature susceptibility versus Figure 2. Spin-correlation functions for various 
T / l $  HT expansions fit: I y u a n t u m  HnE of 161; 2- temperatures. V-L = 70. TI1 = 0.3; A-L = 
classical HTSE of [I  I ] ,  0-MC simulated suscep 
tibility. 

70, TI1 = 0.7; 0-L = 40, TIJ = 1.0. 

3. Numerical simulation: results and discussion 

The temperatures studied in the present work were situated mostly in the range 0.3 G 
T/JS4.0(with thestepsequal toO.l). Latticesizesvariedfrom16 x 16to80 x 80sites 
for the lowest temperatures. Periodic boundary conditions were used everywhere. 
Markovchainlengthswereapproximately 1000 MCS spin-] andthethermalizationregion 
length increased from 5000 MCS for the high temperatures to 1500000 MCS for the low 
temperatures. 

Current values of energy and susceptibility were calculated every MCS, the spin- 
correlation functions were evaluated every 10000 MCS. 

3. I .  Susceptibiliry 

3.1.1. High-temperature region. The comparison was made between our simulated data 
and the high-temperature series expansion (HTSE) for susceptibility of the quantum (61 
and the classical [Ill models. As can be seen from figure 1 the simulation results and 
quantum HTSE are in a very good agreement for temperatures T 2 0.8 J, while there are 
small but systematic discrepancies in the case of classical I~TSE in the temperature range 
0.8 G T/J C 1.8. Both expansions and numerical results merge as they approach unity 
with a further temperature increase. 

Our study of the Pade approximations for the quantum susceptibility series failed to 
reveal (asopposed toStanley’sresultsfortheclassicalsusceptibilityin [ll]) theexistence 
of non-zero critical temperature. 

The same conclusion with regard to the quantum ferromagnetics was reached in [ 121, 
where the renormalization group approach was used to study quantum Heisenberg 
magnetics. 

3.1.2. Exfropolation fo infinitesystems. Earlier works devoted to numerical simulations 
of a similar nature [2, 91 have not studied the size dependence of the susceptibility for 
various temperatures. This was mostly due to the still-high temperatures used in the 
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Table 1. lnterndl energy versus T/J for the various lattice sizes L ,  comparison with the 
Takahashi [7] spin-wave theory predictions, 

.- 
TO L - 2 4  L = d o  " L = ~ O  L = ~ O  f7.j 

., ,m~:. . ~ . ~ . .  ,. . , , , ' . I '  , ,.," . .  
0.3 0.975 0.958 0,974 0.968 0.9763" 
0 .4  0.966 0.949 0.968 0.900 0.9571 
0.5 0.947 0.921 0.946 0.926 0.9326 
0.6 0.918 0.923 0.9211 0.9UO 0,9025 
0.7 0.888 0.875 0.8665 
0.8 0 837 0.824 0 8247 - I I 1  

b. 
x 

2.0 
+ .,..... +..+ _ _ _ _  

. . *. .. '..'.. 
.A 

0 0.02 0.0h 0 06 0 0.02 O b &  0 0 6  
1 6  

111 1 / L  

Figure 3. Finite-size effects for susceptibility: 0- 
T = 0 . 8 1 . + - T = 0 . 7 J , O - T = 0 . 6 J .  

Figure 4. Finite-size effects for susceptibility. Sus- 
ceptibility logarithm versus I/L: A-T = 0.5J,  0- 
T = 0.41, +-T = 0.3 1. ~ ~ 

simulations. Asa result, the low-temperature susceptibilitydata in references[2,9] tend 
to  become unreliable even when presented in the papers. 

Our calculations show that while internal energy is practically size-independent even 
at the lowest temperature T/J = 0.3 (see table 1 of section 3.2). the susceptibility does 
display asize dependence for the temperatures T/J < 0.7, owing to the dramatic growth 
of the correlation length with decreasing temperature (see figure 2). 

The detailed analysis of the temperature-size dependence of the susceptibility 
showed that the behaviour conformed to the conventional scaling laws: when the size of 
the system is sufficiently large the properties of the system will become functions of its 
linear size L.  The following equation was proposed for the staggered susceptibility in 
[ I ]  where the numerical calculations were performed for two-dimensional quantum 
Heisenberg ferromagnetics: 

XITL' =AE/L) (3.1) 
where is the correlation length. 

As can be seen in figure 3, when the temperature is equal to  0.6 J ,  our susceptibility 
for the larger systems is a linear function of inverse lattice size L. We have plotted on 
figure 3 the susceptibilities for the temperatures 0.3 S T/J S 0.5 on the logarithmic 
scale. It is clear that the logarithms are the linear functions of 1/L (e.g. the plot for T = 
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J /  T J /  T 

Figure 5. Susceptibility versus J/T for low rem- 
peratures (linear fit). 

Figure6 Susceptibility fit for spin-wave theories: t 
is logk) versus JIT, full curve 1 (logx) is the fit 
corresponding to [SI: x = a  exp(8nb//T). 0 is 
IogkT) versus J/T,  broken curve 2 ( IogkT))  is the 
fit according IO [7]: x = (a , /7)  exp(8nb, J//T). 

0.5 J: five points from L = 32 to L = 80). We came to the conclusion that f(E/L) has the 
formc(T) exp(-CE/L) wherec(T) is the infinite system susceptibility and Cis aconstant 
close to unity. 

3.1.3. Comparison with the spin-wave theories. Extrapolation results of the previous 
section gave us a chance to compare the numerical simulation results for susceptibility 
with the low-temperature theoretical predictions. To be more specific, there have been 
proposed, from different spin-wave approaches [7,8], the following equations for low- 
temperature susceptibility and correlation length as funclions of temperature: 

x = (a/T') exp(SzbJ/T) (3.2) 

E = (a'/T') exp(4nbJIT) (3.3) 
with the Takahashi theory [8] giving 1 = 0, b = 1/4, a = 1/3zJ, the Yamaji and Kondo 
theory [7] predicting 1 = 1 and b = 1/8 (for the 1/2 spin). 

It is a common enough belief (see [2,13]) that the existence of quantum fluctuations 
in the system will reduce the value of b compared with its theoretically predicted value. 

The behaviour of the correlation length studied in [2] was found to fit quite well the 
following equation for temperatures T'/J = 0.4-5.0 (corresponding to our temperature 
range T/J = 0.8-10.0): 

E = (a"/T") exp(2zb'JIT'). (3.4) 
According to [2] the least squares fit yielded I = 0 and 6' = 0.172, a" = 0.281. It is 

interesting to note that in the same temperature range the correlation function of [2] is 
in good agreement with the HT approximation of [2]. 

E = I/ln(4J/T). (3.5) 
Our numerical simulations show (figure 5 )  that for T/J = 0.8-2.2 (T ' /J  = 0.4-1.1 of 

[Z]) the susceptibility is described remarkably well by (3.2) with the parameters 1 = 0, 
b = 0.151 and a = 0.211 (full line), i.e. x = a exp(SzbJ/T). The dashed line of figure 6 
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is x = (a, /T) exp(8xb,J/T), i.e. (3.2) with 1 = 1, and it is obviously a much poorer fit. 
When making comparisons between our fit for the susceptibility and that of [2] for the 
correlation length one has also to bear in mind the differences in temperature units 
between our work and 121. Since (3.2) and (3.3) of the spin-wave theory suggestx - 5' 
we were able to come to a conclusion that our results for the b parameter and those of 
reference [2] (b') are in a sufficiently good agreement (b  = 0.151 and b' = 0.172). 

The values of b in both cases are less than predicted by spin-wave theory, which may 
be due to the influence of quantum fluctuations assuggested in (2,131. 

I t  is instructive to note another similarity between our work and [2]: as in the case 
for correlation length, our data for susceptibility for T/J = 0.8-2.0 fit both HTSE (see 
figure 1 and section 3.1.1) and the low-temperature spin-wave approximation (namely, 
the Takahashi approach). 

We have estimated the infinite-system susceptibilities for the temperatures T/J = 
0.3-0.7not availableinthepreviousworks11.2.9.ll]andwecame toaconclusion that 
for temperatures T/J s 0.8it isimpossible todescribe the behaviour of thesusceptibility 
by (3.2): i t  is obvious that XTdiverges much slower than the exponential function. As it 
can be seen in figure 6, the discrepancies begin at temperature T = 0.7 J and cannot be 
accounted for by possible extrapolation errors, since figure 3 proves that for tem- 
peratures T/J = 0.7and0.8we havealreadyreachedmacroscopicvaluesusingthe larger 
system sizes ( L  = 40,50,60). 

I t  is easy to see (figure 5 )  that for T/J = 0.3-0.6 the susceptibility x T  is a linear 
function of J/T. 

I A Faoorsky et a1 

xT= c + d/T (3.6) 
with the parameters extracted by the least squares fit being c = 3986 and d = 2457. 
Equation (3.6) means that for the lowest temperatures the susceptibility proper diverges 
as T-Y, with the exponent y very close to 2. I t  resembles the case of linear chains [14]. 
The possible existence of that kind of divergence for staggered susceptibility is discussed 
in [ 131. where the two-dimensional quantum Heisenberg antiferromagnetics were stud- 
ied by the alternative Suzuki Monte Carlo method. 

3.1.4. Comparison with the experimental data. The existence of the two-dimensional 
quantum ferromagnetism in thin films ( 2 5  layers) of >He on grafoil substrate was 
reported by Godfrin et al in [3] for the temperatures 10.0-0.7 mK. According to [3] the 
interaction in 3He can be described by the quantumisotropicHeisenbergferromagnetic 
Hamiltonian of (1.1) with the exchange constant J = 2.1 mK. Since the universal tem- 
perature corresponds to the range 0.3 < T/J < 5.0 it is possible to compare the results 
of our numerical simulations and experimental data both at high- and low-temperature 
regions. 

Thecomparisonshowed several distinctlysimilarfeatures in the susceptibility behav- 
iour. As was proved in section 3.1.1 the model susceptibility and the HTSE agree com- 
pletely for T/J > 0.8. On the other hand, at the same range of temperatures our 
susceptibility follows quite well (see section 3.1.3) the exponential curve predicted 
by spin-wave theory. This peculiarity is closely parallelled by the behaviour of the 
experimental susceptibility of [3]. 

The experimental susceptibility at low temperatures (0.3 < T/J < 0.9) is a linear 
functionofinversetemperature. Although theauthorsof(3) tendtoblame thisbehaviour 
on saturation of the sample magnetization in non-zero magnetic fields, it is a feasible 
suggestion that in some range of temperature below T/J = 0.9, the power divergence 
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, 
k, 5 0.6 

Figure 7. Internal energy versus T/J, our results: 
+-L = 40. 0-L = 24. A-L = 60; I-Taka- 
hashi iow-temperature expansion of 161; 2-high- 

0 1.0 2 . 0  3.0  6 o temperature approximation of 121; %results of [IO] 

0.L 

.._ --. 
0.2 

T/J  (Swuki ~Capproach). 

law reflects the essential trait of low-temperature behaviour of the two-dimensional 
quantum Heisenberg magnetics susceptibility. 

3.2. Internal energy 

In table 1 we present the internal energy values for various temperatures Tand system 
sizes L. One can see that the differences in the energy values for the same temperatures 
donot display any systematic trend; they arenot the monotonous functionsofthelattice 
size and they agree within the error bars (2-3%). 

The comparison between our results, various theoretical approximations and the 
other numerical experiments can be seen in figure 7 .  We have plotted there: (1) our 
results; (2) the results of [lo] where the energy of the quantum Heisenberg magnetics is 
studied with the Suzuki Monte Carlo method; (3) the high-temperature approximation, 
proposed in [2 ] ;  and (4) the low-temperature expansion derived from the Takahashi 
spin-wave theory [8, lo]: 

E =  -1 + (c(2) + c(3)T/4)T2/2n (3.7) 

where cis the zeta-function and E and Tare expressed in units of exchange constant J .  
The results of [9] follow the expansion (3.7) only up to the temperature T = 0.4 J ,  

while our results agree well with (3.7) for temperatures l’/J < 0.9. 
The specific heat peak is situated (for both simulations) somewhere in the region of 

0.85 < T/J < 0.95 that is, right at the point where the discrepancies with the theory 
begin to appear. 

As the theoretical curve for the energy does not contain the inflection necessary for 
the existence of a specific heat peak point, it is highly probable that 0.85-0.95 Ja re  the 
temperatures that limit the applicability of the Takahashi theory. 

For temperatures higher than T = 3.0 Jour  results and those of [lo] begin to agree 
once again, while disagreeing dramatically with the [Z] approximation. According to [2] 
product ETwill tend to become constant with increasing temperature. Our results show 
that this is not true even for the highest temperatures used (T/J = 9.6 and 20) when the 
susceptibility of the system is close to unity. 
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4. Summary 

We have calculated in the present work the equilibrium properties (susceptibility, 
internal energy and specific heat) of the quantum two-dimensional Heisenberg fcrro- 
magnetic system with the nearest-neighbours interaction. 

The Handscomb quantum Monte Carlo approach was used. The large system sizes 
we used in the simulations made it  possible for us to apply a scaling method and to 
achieve reliable results for the infinite system susceptibility in a temperature range 
considerably lower than those studied elsewhere. 

We have also checked our results for the susceptibility and energy against those of 
other numerical experiments and various theoretical predictions. The comparisons 
have enabled us to define temperature regions where the high- and low-temperature 
approximations are valid (if they are at all, as in the case of the HTA for energy). The 
results of the numerical simulations can also be used to fill the gap between the HT and 
LT approximations. 

I A Favorsky et al 

Appendix 

It is a matter of cOmmon knowledge that a straightforward application of the Monte 
Carlomethod isimpossible in thecaseofquantumsystems. The first attempt toovercome 
the difficulties arising from the non-commutativity of spin operators in the quantum 
Heisenberg Hamiltonian 

N Nb Nb 

H = -2pH x S, - U S,(,)-S,.(,)  = Ho + 2 H ( i )  (AI) 
I =  I , = I  , = l  

was made by Handscomb in [4] and the approach was developed further by Lyklema 
IS]. ( N  is number of spins, Nb is number of bonds, H i s  transverse magnetic field.) 

Since operator H, and each of the H ( i )  operators do commute we can expand only 
exp{-gZH(i)} in a two-fold sum: a series over the inverse temperature multiplied by a 
sum corresponding to 

where ZC, is the sum over all possible combinationsof sequences C,of operators: C, = 
i , ,  i, . . . i,, ik is an arbitrary bond number. The partition function Z can be written as: 

2 = Tr{exp(-pH)} = Tr{exp(-/3Ho) (A3) 

If we also interchange the orders of trace and summations operations it will be 
possible to estimate the average of any observableA as the expectation value of acertain 
variable (estimator) QA defined in the space consisting of all the possible sequences 
(strings) of operators C,: 

[ ( -P) ' / r ! ]  zH( i l )H( i2 ) .  . . H ( i , ) ] .  
r = o  C, 

Tr{AH(il)H(i2). . . H ( i , )  exp(-gHBH,)} 
= Tr{H(i,)H(;i) , , , H(i,) exp(LpHi)y ' ~ '  

, ,  ' 

To establish the Markov walk one has to define weights of elements. In order to do 
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this we use the well-known operator identity involving spin-1/2 operators SJ,. and 
permutation operator E(t, f): 

E@, t ’ )  = (4S,S,, + 1)/2.  (-45) 

Permutation operator E(t, t’) interchanges the spin eigenvalues, i.e. it switches the 

If we introduce n(C,) as 
spins currently situated in the t and f’ sites of the lattice. 

n(Cr) = [(-P)‘/r!]Tr{H(i,)H(i,). . . H(i,)e-BH$ 

then in the ferromagnetic case, whenH(i) = -JE(t;, t l)  

n(C,) = [cBJ)’/r!] TI { 
UC,) 

E ( ( & ) .  t’(ik))] = (PJ)‘/r! 
i i = l  , = I  

2cosh(pPHui/2kT) a 0 

(A6) 
where k(C,) is the number of cyclic permutations (cycles) to which sequence C, can be 
reduced; ai is length of the jth cycle. 

We can, further, write 2 as the sum over n(CJ 

p(C,) = z ( C J / 2 2 n ( C r )  a 0. (AX) 

Obviouslyp(C,) is the normalized probability of the C, element. The average of any 
given operatorA is the expectation value of the QA estimator and can be estimated using 
the conventional Monte Carlo technique described below. 

A.l. Monte Carlo steps 

During the random walkover operator sequencesspace we perform three kinds of steps. 

(i) Direct step. We add one randomly selected permutation operator to the end of 
the current sequence C, 

(A101 
. .  . .  c;*, = 1 1 1 2 .  . . I , I , * l .  

(ii) Reuersestep. We delete the first operator from the sequence 

(Al l )  

(iii) Cyclicpermutation. Since the cyclic permutation does not change the outcome 
of trace operation it was suggested by Handscomb when one of the steps was rejected 
to perform a cyclic permutation in the string C, 

. .  Cy-l = ~ ~ 1 ) .  . . i,. 

C:‘ = i,il . . . ir-,. ( A N  
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A.2. Program storage structure 

We used the following arrays in our program: 

current boundaries of the sequence are integer markers lNDl1 and INDIR. 

KR(I) = index of the spin situated right now in the ith site of the lattice. 

I A Fauorsky et ai 

(i) cR-integer array where the string of indices defining C, sequence 'floats'; the 

(ii) Pa-integer array containing the information about current spin permutation: 

(iii) mc-integer array: PRC(I) = location of that site where the ith spin is situated. 
(iv) Lc-integer array: if Lc(1) = LC(K) the spins in the ith and kth sites belong to 

(v) icy-the array where information concerning the lengths of all the cycles is 
the same cyclic permutation, otherwise they do not. 

stored. 

A.3. Step probabilities and acceptance ratios 

According to Lyklema the direct step probability P can be written as: 

P(Cr ---t C ~ + I )  =frPiT+(Cr .+ Crt I )  ('413) 
where f, is the probability of selecting a direct step, pi the probability that we select the 
given permutation, T'(C,+ C,, 1) the direct step acceptance ratio. 

The probability of the reverse step is 

P(C,+I-tC,)=(l-f , )T-(C,tI-tC,)  (A14) 
where T ( C , + ,  - C,) isthe reversestepacceptance ratio. Thedetailed balanceprinciple 
requires 

P(C,)fYC,+ G + I )  =P(cr+I)p(c,+I -+ C,) 

J7(G)P(C,-+ C , , , )  = "(C,+I)P(C,tI -t C,). 

('415) 

(A16) 

taking into account (A4) we can write 

It is easy to see that (A15) will be satisfied if T+ and T-  functions have the following 

(A17a) 

(A17b) 

form: 

T+ (C, .+ C,+ I )  = m i n L  (1 -f,+I )p(C,, L)lplf, P(C,)I 

T-(Crtl  --f c,) = minU7pitrp(cr)/(1 -frtl)p(crtl)}. 

A.4. Monte Carlo steps realization 

A.4.1. Directstep 

We select the direct step with the probability f, (or the reverse step with the probability 
1 - f r )  

f o  = 1 f r  = 1/2 r =  1,2,3.. . 
the permutation operator E(T, 7'1) is selected with the probability l/Nb. We already 
know (LC array) whether the spins in Tand 7 l  sites belong to the same cycle or not and 
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can estimate the acceptance ratio T +  of the step. Then depending on the Tt value we 
either add the permutation operator to the end of the C, string (see A10) or have to 
reject the step (if T+ < < 1 where g is a random number generated when T+ < 1). 

A.4.2. Reverse step 

Since E(t, t')E(t, t ')  = unity operator, we have to apply the permutation operator 
E(ti , ,  t ; , )  to the beginning of the string C, in order to delete the first operator: 

6418) 
. . .  C:- I = i , i , i 2  . . . 1,  = i2i3 . . . i,. 

The difference between the forward and reverse steps is the following: during the 
forward step we add the permutation to the end of the string and it results in a switching 
of spins currently situated in the T and 77 sites corresponding to the selected bond 
(information stored in the PCR array). When performing a reverse step we add the 
permutation to the beginning of the string and we have to exchange the Tand Tl spins 
themselves. Information about theirpresent positions is stored in a PRC array (of course, 
after the steps are performed we update both PCR and PRC arrays). 

The similarity between the steps allows us to deal with acceptance ratios in terms of 
permutation cycles only: 

(A19a) 

(A19b) 

where A is the case when the spins belonged to same cycle, and B where the spins 
belonged to different cycles. 

One has also to keep track of the cycles by updating the LC array. If two spins 
belonged to different cycles the application of the spin permutation merges the cycles 
and the knowledge about the lengths of the cycles (array ICY) allows us to rename the 
shorter cycle. 

If the exchanged spins belonged to the same cycle, this is split and after the per- 
mutation we have two cycles. It is impossible to say beforehand which will be the shorter. 
In this case we walk over the PCR array to define the elements belonging to one of the 
cycles. Still, measuring the cycle length and updating the I.C array will take place for one 
only of the two new cycles. 

A. 4.3. Cyclic permutation 

Jnorder tosimplify theprogram weperformedcyclicpermutation only when thereverse 
step had been rejected. All the pertinent information was at hand already. Alterations 
included only the pair exchanges in PCR, PRC, CR and LC arrays and did not call for the 
walk over PCR array or lengthy updating in the LC array. 
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